Login

Comparing Check Valve Types: Which Is Best for Your ...

Author: Shirley

Dec. 16, 2024

3

0

Tags: Agriculture

Comparing Check Valve Types: Which Is Best for Your ...

Introduction

To maintain the efficient operation and safety of your piping system, it is very important to select the appropriate check valve types. For stopping backflows and protecting water hammer, check valves play a central role in this aspect. Different types of check valves exist, each designed for different flow conditions and performance requirements, which make it difficult for one to choose the best check valve for their particular project. To find the right type for you, we have put together a comparison of various check valve types with application examples in this article that will surely guide you through the entire process.

If you want to learn more, please visit our website.

Different Types of Check Valves and Applications

To select the appropriate valve for your system, understanding various check valve types and their specific applications is paramount. Differentiates in features and advantages among them have made each type appropriate in particular circumstances. The following sections will discuss five common types of check valves and their typical uses. By doing so, you will be able to decide which valve types are most suitable for your project&#;s requirements.

Lift Check Valves

The purpose of Lift check valves is to allow fluid flow in one direction by raising a disk from the valve seat. When the flow stops or is reversed, the disc drops back onto the seat which prevents backflowing. These valves are usually found in systems that have high fluid pressures and relatively clean fluids. Being available in sizes that range from 1/2 inch to 8 inches, lift check valves can be used for different pipeline dimensions. They can effectively handle moderate to high flow rates, thereby guaranteeing their operation will remain uninterruptible under significant flow pressures.

Lift check valves are known for their excellent performance in high-pressure applications. Their gravity-assisted closure mechanism ensures reliable sealing thus making system integrity impeccable. They also require little maintenance thus reducing operational costs over time. However, they may not work with suspended particle fluids as debris may hinder proper seating of the disk. Furthermore, high cracking pressure required to operate them makes them unsuitable for low-pressure differential systems.

The oil and gas industry widely utilizes lift check valves due to presence of pressurized atmosphere in these sectors. Chemical processing plants also use them as well as those having high pressure steam and water networks since they help achieve safe and efficient flow of fluids in such demanding environments.

Swing Check Valves

Swing check valves make use of a valve disc that swings on a hinge or trunnion to either permit or obstruct the flow of fluid. These are suitable for systems with low flow rates and low pressure drops. Swing check valves are available in sizes ranging from 2 inches to 30 inches and can accommodate a wide range of pipeline diameters, making them suitable for various applications. They are especially effective in situations where the flow rate is low to moderate and the cracking pressure is typically low permitting operation under minimal pressure differentials.

Among the most important benefits of swing check valves is their simple design. Their uncomplicated design ensures that they are easily operated and maintained thus contributing to long-term reliability of system operations. The swing check valve is also recommended for larger diameter pipelines and has a low-pressure drop across the valve that improves overall system efficiency. Nonetheless, it suffers from water hammers in high velocity systems. Also, slower response to reverse flow compared to other types.

In water and wastewater treatment plants, swing check valves are widely utilized because they help maintain flow direction. Furthermore, these instruments are used extensively in pumping stations and boiler systems which form critical components in an infrastructure that functions reliably.

Dual Plate Check Valves

Dual plate check valves are also referred to as wafer check valves because they have two discs that open and close according to the direction of flow. These valves are small in size and lightweight, which makes them perfect for restricted spaces. Dual plate check valves can be found in different sizes ranging from 2 inches up to 24 inches, with a capacity to operate at varying flow rates balancing between lift and swing check valves as far as cracking pressure is concerned.

The compactness and light weight of dual plate check valves help save space in systems with limited installation area. They have low pressure drop, reducing energy consumption and enhancing flow efficiency. Moreover, these kinds of check valves accommodate various ones including gases; liquids; steam etc. Nevertheless, their maintenance requirements may be more than those for other designs or not ideal for high particle content fluids.

Dual-plate check valves are commonly found in HVAC systems, chemical processing and maritime applications where efficiency of space utilization and reliability are important.

Non-Slam Check Valves

Non-slam check valves are designed in such a way that they close smoothly and quietly. For such valves, there is normally the use of a spring mechanism to assist in closure whereby this facilitates prompt response to reverse flow. They have sizes from 1/2 inch all the way up to 24 inches and can effectively handle both low and high flow rates. Most non-slam check valves have relatively low to moderate cracking pressure that allows them to respond quickly to changes in direction of flow.

Among other things, these types of valves minimize or eliminate water hammer which usually causes massive damage to pipelines as well as associated equipment. Moreover, their suitability for delicate operations is further improved by their quietness and quick response to change in flow direction. However, because of more complicated design involved in non-slam check valves compared with simpler counterparts, more maintenance is required while initial cost might be higher.

Non-slam check valves are ideal for pumping stations, high-rise building water systems, and other applications where hydraulic shock could disrupt operations or damage equipment.

If you want to learn more, please visit our website Huakai Anti-Corrosion Equipment.

Further reading:
Tape machine owners how do you afford tape

Tilting-Disc Check Valves


What to Look for When Buying a Stock Tank

The disc of tilting disk check valves can tilt such that it allows flow in one direction and returns to its original position when the pressure is removed. It has a design that gives low pressure drops as well as being able to handle flow rates and pressures that vary. These types of valves are available in sizes ranging from 2 to 30 inches, making them suitable for a wide range of applications. They have very low cracking pressure which makes them ideal for low-pressure systems, ensuring smooth and efficient operation.

One of the main advantages of tilting-disc check valves is their versatility. In addition, they can be used to handle different flow conditions and have been engineered with durability in mind requiring minimal upkeep. For this reason, their users are guaranteed reduced costs because &#; as a result &#; system efficiency is better enhanced by the low pressure drop across these devices. Nevertheless, compared to swing check, tilting disc checks cost more and may need to be installed correctly so as to operate effectively.

Water distribution systems, industrial processes and power production use tilting disc check valve extensively due to their reliability in these disparate applications.

Make an informed decision regarding the check valve types that best suit your project by understanding these different types of check valves and their specific applications.

Key Factors to Consider When Choosing a Check Valve

When choosing the right check valve for your system, there are several factors that need to be considered to get the best results. Here are the primary factors to keep in mind:

  1. Flow Conditions: It is important to know the flow conditions in your system and that is why we are here. This includes the flow rate, pressure and the possibility of back flow. There are various types of check valves which are used to control the flow of fluids in a particular manner. For instance, lift check valves are ideal for high pressure systems while swing check valves are ideal for low pressure systems with low flow rates and pressure drops. Understanding the flow conditions will assist you in identifying a valve that will provide the best performance and reliability.
  2. Material Compatibility: The material of the valve body and valve seat is another important consideration that has to be made. The suitability of the valve materials with the fluid being handled is crucial to avoid corrosion and enhance the valve&#;s life. Stainless steel valves are widely used due to their ability to withstand corrosion and their versatility in use. Other materials like brass or PVC may be used based on the fluid and the surrounding environment.
  3. Cracking Pressure: Cracking pressure is the minimum pressure that is needed to open the valve. The cracking pressure of the valve should be selected according to the system in which it is to be used. Low cracking pressure valves are used in systems with low pressure differentials while high cracking pressure valves are used in high pressure systems. Choosing the right cracking pressure will guarantee that the valve will work as expected in the given system conditions.
  4. Size and Weight: The size and weight of the check valve may also affect the design and installation of your system. Small and light valves such as dual plate check valves are suitable for use in areas with limited space. It is important to ensure that the valve does not take up too much space and does not add too much weight to the system to ensure that the structure is strong enough and can be easily installed.
  5. Maintenance Requirements: Think about the maintenance of the valve. Not all check valves need to be serviced as often as others. For example, non-slam check valves with spring type may require periodic maintenance and cleaning to ensure that they are in good condition. Knowing the maintenance needs will assist you in budgeting for the future and the dependability of the system.
  6. Application-Specific Requirements: Last but not the least, it is necessary to take into account any specific needs of the application. Some industries and uses may have specific requirements that are not present in others. For instance, the tilting-disc check valves are widely used in industrial processes and power generation because they are flexible and can work under different flow conditions. This will help in increasing the efficiency and durability of the valve for your application, thus meeting the required needs.

Thus, taking into consideration these factors, you will be able to choose the right check valve for your system and achieve the desired performance.

Conclusion: Selecting the Right Check Valve for Your Project

Among the types of check valves mentioned in this article were lift, swing, dual plate, non-slam and tilting-disc types that were described by focussing on their key features and applications. Some important factors to consider when selecting a check valve such as flow conditions, material compatibility, cracking pressure, size and maintenance requirements are discussed in the above context. We believe that with the help of this guide you will be able get the right check valve for your business.

Get in touch with us today for professional advice and personalized recommendations! Allow us to assist you find the ideal check valve for your project.

Most reliable check valve?

seawandrr

Registered Member


Join Date: Jun

Location: Seattle

Posts: 132

I take the following approach to this problem.

The "keep the returns right below the surface" works until you bump some return lockline one day while working in the tank and don't notice that you moved it 3-4" lower in the tank. Of course the next time the return is shut off... well....

For all of my tanks with canopies where the extra plumbing isn't visible, I put a PVC T into the return line(s) at their high point and run a dedicated siphon break off of this, with a small ball valve to control and reduce the water flow down to a minimum. This is the same concept as the old "drill a hole in the return above the waterline" concept, just more directly engineered/implemented.

This can just be some simple 1/2" sch40 or spa-flex with fittings to point it back down towards the water, and a short extension to bring it right down near the surface to eliminate any splashing noises. The target is usually an overflow, but on my large frag tank, it's just flowing into the back corner. Black paint makes it almost invisible.

I use the ball valve to valve it back to a minimal amount of flow, but enough such that it breaks the siphon instantly any time the return is shut off.

Every month I just open/close the ball valve completely to knock off any crud that may have built up, and it's easy when doing a scan of the tank to make sure there's still water flow out of the siphon break into the overflow.

On my larger tanks with multiple returns, I put 2 on the tank for redundancy.

Since starting this on every tank build 2 1/2 years ago, I've never had a return/siphon break related sump overflow.

It's a little extra work, a couple of more PVC pieces, and one or two more pipes coming over the back of the tank, but about as failsafe as one can get, and totally frees up your ability to place the returns


Want more information on Fluorine Lined Check Valve? Feel free to contact us.

Comments

0

0/2000

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)

Join Us