- Automobiles & Motorcycles
- Beauty & Personal Care
- Business Services
- Chemicals
- Construction & Real Estate
- Consumer Electronics
- Electrical Equipment & Supplies
- Electronic Components & Supplies
- Energy
- Environment
- Excess Inventory
- Fashion Accessories
- Food & Beverage
- Furniture
- Gifts & Crafts
- Hardware
- Health & Medical
- Home & Garden
- Home Appliances
- Lights & Lighting
- Luggage, Bags & Cases
- Machinery
- Measurement & Analysis Instruments
- Mechanical Parts & Fabrication Services
- Minerals & Metallurgy
- Office & School Supplies
- Packaging & Printing
- Rubber & Plastics
- Security & Protection
- Service Equipment
- Shoes & Accessories
- Sports & Entertainment
- Telecommunications
- Textiles & Leather Products
- Timepieces, Jewelry, Eyewear
- Tools
- Toys & Hobbies
- Transportation
Which is the Best Material for Your Oil Seal?
Which is the Best Material for Your Oil Seal?
Which is the Best Material for Your Oil Seal?
An oil seal is basically a simple device, which is used to stop dirt, dust, water, and other contaminants from entering the shaft equipment. It is also known by other names like elastomeric lip seal, lip seal, shaft seal, or rotary shaft seal. The seal, while doing its job, helps retain the lubrication of a rotary shaft equipment. These seals are mainly used to protect the bearings used in a rotating shaft.
If you are looking for more details, kindly visit our website.
Materials Used to Make Oil Seals:
Oil seals can be made from a vast range of materials depending upon the application. Some common materials used to manufacture oil seals include:
- Silicone: The widest range of operating temperature range is provided by silicone compounds. They offer an amazing temperature range from -90°F to 340°F. Nonetheless, in dry running conditions, these compounds do not perform well. It is always advisable to avoid the usage of silicone compounds with oxidized oils and EP (Extreme Pressure) compounds.
- Viton®: Viton® compounds are said to offer the widest operating temperature range varying from 40°F to 400°F. These are considered as the premium materials for the lip seals. In addition to this, these compounds are highly resistant to chemicals and abrasion. These qualities help Viton® deliver better good performance. Unlike silicone compounds, Viton® performs well in dry running applications.
- Nitrile Buna-N: Most companies consider Nitrile Buna-N 70 durometer compound to be the perfect material for oil seals. The compound has several benefits, which makes it the first choice of material in a wide range of applications. Oils seals that are made from this material have a wide operating temperature range from -65°F to 250°F. In addition to this, this material is compatible to work with water, as well as common mineral oil and greases.
Above mentioned are some materials used for manufacturing oil seals. Each material has its own set of pros and cons. Therefore, selection of materials should be made on the basis of the application. There are quite a variety of materials to choose from. If you find it tricky to select the right material for oil seals, you can always ask an expert. SSP Manufacturing, Inc. is one such expert in manufacturing oil seals in the USA. Please contact us by : +1-888-238- or with any questions.
Related Post
The Advantages and Disadvantages of the Channel Seal
By Doug Montgomery
If you are looking for more details, kindly visit CDI.
November 14,
Technological advancements in the area of robotics have led to more and more life-like creations existing only in works of science fiction a few decades ago. Development in autonomous logic processing and sensing allows bipedal robots to walk over uneven ground, up and down stairs, open doors and carry loads. Fast response to dynamic and unpredictable real-world environments is critical for the future use of robots in true-life service and practical employment in the years to come. While software and sensor development remain the primary focus of most research, the physical mechanics of next-gen robotics are also continually progressing. Physical components and control systems such as hydraulic pumps and cylinders, servo motors, and structural members are under pressure to continually be lighter, stronger, more efficient and less expensive. Increased demands on the physical components facilitate the need for innovative solutions in design and material usage. Advancements in construction and technology have spilled into all areas of robotic mechanisms and the many seals located throughout the system need to meet the challenges of tomorrow. Eclipse has been at the forefront of this research and has developed innovative solutions pushing the boundaries of conventional sealing devices. MicroLip by Eclipse is a prime example of most demanding applications forging new technologies in the sealing world. The Client's Issue Eclipse was approached by a leading robotics company looking for a sealing solution operating under a challenging set of conditions. While many components of tomorrows robotics are now controlled and actuated by servo/stepper motors and various electronic devices, the heaviest and most powerful movements are still driven by traditional hydraulics. The constant demand for more powerful hydraulic actuation in ever deceasing size and weight requirements has put tremendous strain on component design. But if robots are to progress to the point where they are usefully employed in the world, high power in a compact design is necessary. A robot, for example, used to survey and assist in a disaster zone too unstable for normal rescuers, must fit through doorways and over obstacles yet still be physically strong enough to render assistance. Large hydraulic systems are capable of moving extremely heavy loads but size and weight constraints of a humanoid size robot limit potential. The robots internal power supply to drive all components is also a limiting factor. Our client was developing a new hydraulic pump to drive all major motion aspects of their robotic systems. Their main objective was to minimize the pumps physical size as much as possible while increasing output and improving power consumption efficiency. This means higher pressures and speeds on increasingly smaller and lighter components. Application Parameters: Shaft Diameter: Ø9.5mm Seal Housing Envelope: 5mm radial cross-section by 6mm axial width Rotational Speed: 3,500 RPM nominally; 6,000 RPM max Operating Pressure: 125 PSI min, 225 PSI nominal, 350 PSI max Surface Finish: 0.04µm Media: Hydraulic Oil While the above combination of pressure and speed might present difficulties for any conventional seal alone, the clients extremely small physical envelope to house the seal further complicated the matter. If that wasnt enough, the application presented the additional sealing challenge of up to 0.003 [0.08mm] of shaft runout. As part of the downsizing of all components in the pump, shaft support bearings were minimized leading to the possibility of runout. The wobbling effect of the shaft creates problems as the sealing lip has follow a moving, uneven mating surface, therefore potential leak-paths are created. Wear life can also be compromised due to higher concentrations of uneven loads. The combination of high pressure, high speed, high runout and minimal gland size present a worst-case scenario for a typical seal. Unsurprisingly, the client faced leakage of hydraulic fluid after only short periods of service with any conventional seal they had tested. Eclipse knew the had the perfect solution for this application. One developed to handle such extreme rotary sealing conditions: MicroLip.
The company is the world’s best Custom Oil Seal supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
Previous
None
If you are interested in sending in a Guest Blogger Submission,welcome to write for us!
Comments
0