- Automobiles & Motorcycles
- Beauty & Personal Care
- Business Services
- Chemicals
- Construction & Real Estate
- Consumer Electronics
- Electrical Equipment & Supplies
- Electronic Components & Supplies
- Energy
- Environment
- Excess Inventory
- Fashion Accessories
- Food & Beverage
- Furniture
- Gifts & Crafts
- Hardware
- Health & Medical
- Home & Garden
- Home Appliances
- Lights & Lighting
- Luggage, Bags & Cases
- Machinery
- Measurement & Analysis Instruments
- Mechanical Parts & Fabrication Services
- Minerals & Metallurgy
- Office & School Supplies
- Packaging & Printing
- Rubber & Plastics
- Security & Protection
- Service Equipment
- Shoes & Accessories
- Sports & Entertainment
- Telecommunications
- Textiles & Leather Products
- Timepieces, Jewelry, Eyewear
- Tools
- Toys & Hobbies
- Transportation
Selecting the Right Anchor For Your Refractory Project
Selecting the Right Anchor For Your Refractory Project
By Paul Fisher
well contains other products and information you need, so please check it out.
April 19,
The East Bay Municipal Utility District (EBMUD) Wastewater Treatment Plant, located on the eastern shore of San Francisco Bay, provides service for an estimated 740,000 people in the greater Oakland, California area. In addition to traditional wastewater treatment, the plant also collects and treats solid waste from Bay Area food and animal processing facilities, restaurants, and wineries, diverting this waste stream away from landfills. The methane gas that is generated from the decomposition of this solid waste is then used internally as a renewable source of energy to help supply the treatment plants energy needs. When EBMUD began looking for a way to upgrade the failing brick refractory lining in their emergency digester gas flare structure, they turned to TFL, Incorporated. TFL developed an innovative precast refractory shape system that would offer dependable performance, structural integrity, and ease of installation. The unique system of floating wall panels is held in place using tongue-and-groove tieback shapes, bolted to the existing concrete structure. The individual panels in the system can absorb thermal and mechanical stresses independently. Given the location, potential seismic loading was also considered in the development of the system. The existing flare containment building is an oval-shaped concrete structure, with inside dimensions of 17 wide by 47 long. The refractory lined upper section of the structure is just over 21 tall. The refractory wall thickness is 4-1/2. A 2 air gap between the refractory wall and the concrete wall allows for airflow and ventilation. The refractory wall system consists of 514 precast shapes of four basic types, all manufactured in TFLs Houston, Texas facility. The shapes were cast using Plicast HyMOR KK, a low-cement castable refractory manufactured by Plibrico Company. Stainless steel needle fibers were used for added reinforcement and to improve resistance to thermal shock and cracking. The shapes were fired to o F prior to shipment, optimizing strengths and allowing the flare structure to be immediately operational, without the need for a field dry out of the refractory. NTK Construction, Inc. of San Francisco, California, was the installation contractor for EBMUD.
Refractory Anchor Design: 3 Important Things You Need to ...
A significant number of refractory lining failures can be traced to either faulty design or improper installation of the anchor system. The tips of anchors in particular need special consideration due to their exposure to the highest temperatures.
In this Technical Tuesday feature for Heat Treat Today, Dan Szynal, Vice President of Engineering and Technical Service for the Plibrico Company, a manufacturer of monolithic refractories, gives 3 important tips for refractory engineers and managers to use in achieving an improved anchor design.
It is estimated that up to 40% of refractory lining failures can be attributed to a problem with the design of the anchor system or improper installation. This is a significant number. When designing a refractory lining for an industrial application, anchor design becomes one of the most important factors in creating an improved lining that is supported properly. In particular, the tips of the anchors experience the highest temperatures because they are closest to the hot face and thus become an important consideration.
Anchors have several functions. They hold the refractory to the wall to keep it from falling in. They also prevent wall buckling due to the internal thermal stresses created by high temperatures. And, to a lesser degree, anchors can also help support the load of the refractory weight.
To create a monolithic refractory lining that is properly supported and maximizes service life, here are three important metallic anchor tips you need to know.
Anchor Types and Service Temperatures
For refractory linings using metallic anchor systems, refractory engineers and designers almost always use Class III austenitic stainless-steel anchors of various qualities. The typical grades of stainless steel used are AISI 304, 309, and 310. These contain chromium and nickel to provide the best corrosion resistance and ductility at high temperatures. For some applications in which temperatures are more extreme and the use of ceramic tile anchors is not practical for various reasons, AISI 330 and even Inconel 601 is sometimes used. These anchors have higher nickel content for superior oxidation resistance and tensile strength at temperatures of °F or higher. Inconel 601 gives the added advantage of good resistance to both carburization and sulfidation in extreme applications.
If you want to learn more, please visit our website Refractory Anchors Manufacturer.
Industry Best Anchor Practices
Anchor sizing for a refractory lining depends on the refractory thickness and number of components. Some designers use the practice of sizing the anchor height to be 75-85% through the main dense castable or gunned lining. Other rules of thumb used in the industry dictate that the anchor tip should be no more than two inches from the hot face of the refractory for thicker lining designs greater than 6-7.
For refractory applications, it is useful to know the temperature gradient through the refractory liningfrom the hot face to the cold faceto choose the proper anchor size so that one doesnt exceed the temperature limit of the alloy being used. To help calculate the correct temperatures at different points in the refractory lining, many industry professionals will use a heat loss calculator/estimator. By using a heat loss calculator/estimator, one can choose the proper anchor height by determining the anchor tip temperature it will experience. There are numerous heat loss applications that can estimate the cold face of a furnace lining given the input conditions of a thermal unit. As part of its value-added service as a refractory solutions provider, Plibrico Company, LLC, has a web-based heat loss application that gives a good estimation of the thermal gradient of the refractory lining from hot face to cold face to maximize anchor thermal performance.
For example, look at figure 2.0. You can see a 9 side wall of refractory lining using 6 of a typical 60% alumina low-cement castable and 3 of °F lightweight insulating castable for an application operating at °F with an ambient temperature of 80°F. For this application, we would select 309 SS or 310 SS metallic anchors because the intermediate temperature at about 80% of the main lining thickness is at about °F. Although 304 SS anchors would be more cost effective and are most commonly used in the industry, the anchor tips would oxidize at this temperature and would essentially burn out.
A Word on Anchor Tips
Standard practice for several years now has been to allow for expansion of the anchor tines by covering the anchor tips with plastic caps, dipping them in a wax, or putting tape on them. Metallic anchors expand at about three times the rate of alumino-silicate refractories. The expansion material affixed to the anchor tips burns out at low temperature and allows the anchor space to expand without causing cracks in the refractory.
Best practices in metallic anchor design also must include anchor spacing. Greatly a function of the specific equipment and geometry size, refractory engineers must consider the specific installation area. For example, anchor spacing patterns will be different in a flat wall or roof as compared to a section that has a transition of geometry or a less critical area of a vessel.
Anchor spacing should be based on the features of each specific project, such as mechanical properties of the anchor, and the refractory lining as a function of the temperature. Refractory engineers will use these properties in mathematical models to help create the optimal anchor spacing pattern and plan.
Often, failures commonly attributed to the refractory component can, in fact, be caused by deficiencies in the anchoring system. A strong anchoring system is key to maintaining monolithic refractory lining integrity, even when it is cracked, to prevent a total structural collapse.
To prevent vessel lining failures, increase service life, and maximize refractory performance, incorporate these metallic anchor tips. With these tips, it is possible to design and optimize an anchoring system that will work well with the demanding needs of refractory linings today.
For more information about metallic anchors and refractory anchoring systems, contact the Plibrico Company at
Contact us to discuss your requirements of Steel Fiber Manufacturer. Our experienced sales team can help you identify the options that best suit your needs.
Previous
None
If you are interested in sending in a Guest Blogger Submission,welcome to write for us!
Comments
0